333 research outputs found

    Versatile thiol-based reactions for micrometer- and nanometer-scale photopatterning of polymers and biomolecules

    Get PDF
    Thiol-based chemistry provides a mild and versatile tool for surface functionalization. In the present work, mercaptosilane films were patterned by utilizing UV-induced photo-oxidation of the thiol to yield sulfonate groups via contact and interferometric lithography (IL). These photo-generated sulfonic acid groups were used for selective immobilization of amino-functionalized molecules after activation with triphenylphosphine ditriflate (TPPDF). Moreover, protein-resistant poly(oligoethyleneglycolmethacrylate) (POEGMA) brushes were grown from the intact thiol groups by a surface-induced polymerization reaction. Exploiting both reactions it is possible to couple amino-labelled nitrilotriacetic acid (NH2-NTA) to sulfonate-functionalized regions, enabling the site-specific binding of green fluorescent protein (GFP) to regions defined lithographically, while exploiting the protein-resistant character of POEGMA brushes to prevent non-specific protein adsorption to previously masked areas. The outstanding reactivity of thiol groups paves the way towards novel strategies for the fabrication of complex protein nanopatterns beyond thiol–ene chemistry

    Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    Get PDF
    BACKGROUND: The relative role of anti apoptotic (i.e. Bcl-2) or pro-apoptotic (e.g. Bax) proteins in tumor progression is still not completely understood. METHODS: The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. RESULTS: In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5) exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5). However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i) huBax A15A5 cells were tumorogenic in nude mice, ii) an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii) BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. CONCLUSIONS: We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune respons

    From Monochrome to Technicolor: Simple Generic Approaches to Multicomponent Protein Nanopatterning Using Siloxanes with Photoremovable Protein-Resistant Protecting Groups.

    Get PDF
    We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, it is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy

    Durvalumab as monotherapy and in combination therapy in patients with lymphoma or chronic lymphocytic leukemia: The FUSION NHL 001 trial.

    Get PDF
    BACKGROUND: Studies suggest that immune checkpoint inhibitors may represent a promising strategy for boosting immune responses and improving the antitumor activity of standard therapies in patients with relapsed/refractory hematologic malignancies. AIMS: Phase 1/2 FUSION NHL 001 was designed to determine the safety and efficacy of durvalumab, an anti-programmed death ligand 1 (PD-L1) antibody, combined with standard-of-care therapies for lymphoma or chronic lymphocytic leukemia (CLL). METHODS AND RESULTS: The primary endpoints were to determine the recommended phase 2 dose of the drugs used in combination with durvalumab (durvalumab was administered at the previously recommended dose of 1500 mg every 4 weeks) and to assess safety and tolerability. Patients were enrolled into one of four arms: durvalumab monotherapy (Arm D) or durvalumab in combination with lenalidomide ± rituximab (Arm A), ibrutinib (Arm B), or rituximab ± bendamustine (Arm C). A total of 106 patients with relapsed/refractory lymphoma were enrolled. All but two patients experienced at least one treatment-emergent adverse event (TEAE); those not experiencing a TEAE were in Arm C (diffuse large B-cell lymphoma [DLBCL]) and Arm D (DLBCL during the durvalumab monotherapy treatment period). No new safety signals were identified, and TEAEs were consistent with the respective safety profiles for each study treatment. Across the study, patients with follicular lymphoma (FL; n = 23) had an overall response rate (ORR) of 59%; ORR among DLBCL patients (n = 37) was 18%. Exploratory biomarker analysis showed that response to durvalumab monotherapy or combination therapy was associated with higher interferon-γ signature scores in patients with FL (p = .02). CONCLUSION: Durvalumab as monotherapy or in combination is tolerable but requires close monitoring. The high rate of TEAEs during this study may reflect on the difficulty in combining durvalumab with full doses of other agents. Durvalumab alone or in combination appeared to add limited benefit to therapy

    Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients

    Get PDF
    In this study we evaluated the potential of expanded NK cells (eNKs) from two sources combined with the mAbs daratumumab and pembrolizumab to target primary multiple myeloma (MM) cells ex vivo. In order to ascertain the best source of NK cells, we expanded and activated NK cells from peripheral blood (PB) of healthy adult donors and from umbilical cord blood (UCB). The resulting expanded NK (eNK) cells express CD16, necessary for carrying out antibody-dependent cellular cytotoxicity (ADCC). Cytotoxicity assays were performed on bone marrow aspirates of 18 MM patients and 4 patients with monoclonal gammopathy of undetermined significance (MGUS). Expression levels of PD-1 on eNKs and PD-L1 on MM and MGUS cells were also quantified. Results indicate that most eNKs obtained using our expansion protocol express a low percentage of PD-1+ cells. UCB eNKs were highly cytotoxic against MM cells and addition of daratumumab or pembrolizumab did not further increase their cytotoxicity. PB eNKs, while effective against MM cells, were significantly more cytotoxic when combined with daratumumab. In a minority of cases, eNK cells showed a detectable population of PD1+ cells. This correlated with low cytotoxic activity, particularly in UCB eNKs. Addition of pembrolizumab did not restore their activity. Results indicate that UCB eNKs are to be preferentially used against MM in the absence of daratumumab while PB eNKs have significant cytotoxic advantage when combined with this mAb

    Disruption of Dnmt1/PCNA/UHRF1 Interactions Promotes Tumorigenesis from Human and Mice Glial Cells

    Get PDF
    Global DNA hypomethylation is a hallmark of cancer cells, but its molecular mechanisms have not been elucidated. Here, we show that the disruption of Dnmt1/PCNA/UHRF1 interactions promotes a global DNA hypomethylation in human gliomas. We then demonstrate that the Dnmt1 phosphorylations by Akt and/or PKC abrogate the interactions of Dnmt1 with PCNA and UHRF1 in cellular and acelluar studies including mass spectrometric analyses and the use of primary cultured patient-derived glioma. By using methylated DNA immunoprecipitation, methylation and CGH arrays, we show that global DNA hypomethylation is associated with genes hypomethylation, hypomethylation of DNA repeat element and chromosomal instability. Our results reveal that the disruption of Dnmt1/PCNA/UHRF1 interactions acts as an oncogenic event and that one of its signatures (i.e. the low level of mMTase activity) is a molecular biomarker associated with a poor prognosis in GBM patients. We identify the genetic and epigenetic alterations which collectively promote the acquisition of tumor/glioma traits by human astrocytes and glial progenitor cells as that promoting high proliferation and apoptosis evasion

    Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis

    Get PDF
    The process of apoptosis in immune cells like mast cells is essential to regain homeostasis after an inflammatory response. The intrinsic pathway of apoptosis is ultimately controlled by the pro-apoptotic Bcl-2 family members Bax and Bak, which upon activation oligomerize to cause increased permeabilization of the mitochondria outer membrane leading to cell death. We examined the role of Bax and Bak in cytokine deprivation-induced apoptosis in mast cells using connective tissue-like mast cells and mucosal-like mast cells derived from bax−/−, bak−/− and bax−/−bak−/− mice. Although both Bax and Bak were expressed at readily detectable protein levels, we found a major role for Bax in mediating mast cell apoptosis induced by cytokine deprivation. We analyzed cell viability by propidium iodide exclusion and flow cytometry after deprivation of vital cytokines for each mast cell population. Upon cytokine withdrawal, bak−/− mast cells died at a similar rate as wild type, whereas bax−/− and bax−/−bak−/− mast cells were partially or completely resistant to apoptosis, respectively. The total resistance seen in bax−/−bak−/− mast cells is comparable with mast cells deficient of both pro-apoptotic Bim and Puma or mast cells overexpressing anti-apoptotic Bcl-2. These results show that Bax has a predominant and Bak a minor role in cytokine deprivation-induced apoptosis in both connective tissue-like and mucosal-like mast cells

    Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection

    Get PDF
    Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death

    A phase 1/2, open-label, multicenter study of isatuximab in combination with cemiplimab in patients with lymphoma

    Get PDF
    Patients with relapsed or refractory lymphoma have limited treatment options, requiring newer regimens. In this Phase 1/2 study (NCT03769181), we assessed the safety, efficacy, and pharmacokinetics of isatuximab (Isa, anti-CD38 antibody) in combination with cemiplimab (Cemi, anti-programmed death-1 [PD-1] receptor antibody; Isa + Cemi) in patients with classic Hodgkin lymphoma (cHL), diffuse large B-cell lymphoma (DLBCL), and peripheral T-cell lymphoma (PTCL). In Phase 1, we characterized the safety and tolerability of Isa + Cemi with planned dose de-escalation to determine the recommended Phase 2 dose (RP2D). Six patients in each cohort were treated with a starting dose of Isa + Cemi to determine the RP2D. In Phase 2, the primary endpoints were complete response in Cohort A1 (cHL anti-PD-1/programmed death-ligand 1 [PD-L1] naïve), and objective response rate in Cohorts A2 (cHL anti-PD-1/PD-L1 progressors), B (DLBCL), and C (PTCL). An interim analysis was performed when the first 18 (Cohort A1), 12 (Cohort A2), 17 (Cohort B), and 11 (Cohort C) patients in Phase 2 had been treated and followed up for 24 weeks. Isa + Cemi demonstrated a manageable safety profile with no new safety signals. No dose-limiting toxicities were observed at the starting dose; thus, the starting dose of each drug was confirmed as the RP2D. Based on the Lugano 2014 criteria, 55.6% (Cohort A1), 33.3% (Cohort A2), 5.9% (Cohort B), and 9.1% (Cohort C) of patients achieved a complete or partial response. Pharmacokinetic analyses suggested no effect of Cemi on Isa exposure. Modest clinical efficacy was observed in patients with cHL regardless of prior anti-PD-1/PD-L1 exposure. In DLBCL or PTCL cohorts, interim efficacy analysis results did not meet prespecified criteria to continue enrollment in Phase 2 Stage 2. Isa + Cemi did not have a synergistic effect in these patient populations

    Temporal and spatial dynamics of competitive parapatry in chewing lice

    Get PDF
    We synthesize observations from 1979 to 2016 of a contact zone involving two subspecies of pocket gophers (Thomomys bottae connectens and T. b. opulentus) and their respective chewing lice (Geomydoecus aurei and G. centralis) along the Rio Grande Valley in New Mexico, U.S.A., to test predictions about the dynamics of the zone. Historically, the natural flood cycle of the Rio Grande prevented contact between the two subspecies of pocket gophers. Flood control measures completed in the 1930s permitted contact, thus establishing the hybrid zone between the pocket gophers and the contact zone between their lice (without hybridization). Since that time, the pocket gopher hybrid zone has stabilized, whereas the northern chewing louse species has replaced the southern louse species at a consistent rate of similar to 150 m/year. The 0.2-0.8 width of the replacement zone has remained constant, reflecting the constant rate of chewing louse species turnover on a single gopher and within a local pocket gopher population. In contrast, the full width of the replacement zone (northernmost G. centralis to southernmost G. aurei) has increased annually. By employing a variety of metrics of the species replacement zone, we are better able to understand the dynamics of interactions between and among the chewing lice and their pocket gopher hosts. This research provides an opportunity to observe active species replacement and resulting distributional shifts in a parasitic organism in its natural setting
    corecore